ValueError could not convert string to float in Machine learning

+1 vote

Hi Guys,

I am trying to filter my dataset using constant variable method, but it shows me the bellow error.

ValueError                                Traceback (most recent call last)
<ipython-input-10-d28793719248> in <module>
----> 1 model.fit(dataset)
~\anaconda3\lib\site-packages\sklearn\feature_selection\_variance_threshold.py in fit(self, X, y)
     67         """
     68         X = check_array(X, ('csr', 'csc'), dtype=np.float64,
---> 69                         force_all_finite='allow-nan')
     70 
     71         if hasattr(X, "toarray"):   # sparse matrix
~\anaconda3\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
    529                     array = array.astype(dtype, casting="unsafe", copy=False)
    530                 else:
--> 531                     array = np.asarray(array, order=order, dtype=dtype)
    532             except ComplexWarning:
    533                 raise ValueError("Complex data not supported\n"
~\anaconda3\lib\site-packages\numpy\core\_asarray.py in asarray(a, dtype, order)
     83 
     84     """
---> 85     return array(a, dtype, copy=False, order=order)
     86 
     87 
ValueError: could not convert string to float: '208 Michael Ferry Apt. 674\nLaurabury, NE 37010-5101'

How can I solve this error?

Apr 14, 2020 in Machine Learning by akhtar
• 38,260 points
27,148 views

1 answer to this question.

0 votes

Hi@akhtar,

You are trying to use constant variable method for filtering your dataset. But your dataset may contain string as shown in the error. We know constant or quasi-constant method is used to filter out the columns which contains only numeric value.

To avoid this error you can use co-relation method to filter out your string data.

Hope this will help.

If you need to know more, Its recommended to go for Machine Learning with Python course today.

Thank you!

answered Apr 14, 2020 by MD
• 95,460 points


logmodel.fit(X_train,y_train)
ValueError                                Traceback (most recent call last)
<ipython-input-39-0b508b2e1562> in <module>
----> 1 logmodel.fit(X_train,y_train)

~\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py in fit(self, X, y, sample_weight)
   1525 
   1526         X, y = check_X_y(X, y, accept_sparse='csr', dtype=_dtype, order="C",
-> 1527                          accept_large_sparse=solver != 'liblinear')
   1528         check_classification_targets(y)
   1529         self.classes_ = np.unique(y)

~\anaconda3\lib\site-packages\sklearn\utils\validation.py in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, warn_on_dtype, estimator)
    753                     ensure_min_features=ensure_min_features,
    754                     warn_on_dtype=warn_on_dtype,
--> 755                     estimator=estimator)
    756     if multi_output:
    757         y = check_array(y, 'csr', force_all_finite=True, ensure_2d=False,

~\anaconda3\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
    529                     array = array.astype(dtype, casting="unsafe", copy=False)
    530                 else:
--> 531                     array = np.asarray(array, order=order, dtype=dtype)
    532             except ComplexWarning:
    533                 raise ValueError("Complex data not supported\n"

~\anaconda3\lib\site-packages\numpy\core\_asarray.py in asarray(a, dtype, order)
     83 
     84     """
---> 85     return array(a, dtype, copy=False, order=order)
     86 
     87 

ValueError: could not convert string to float: 'SOTON/O.Q. 3101307'

As mentioned above you have to convert your string data to float. For that you can use the concept of categorical variable. Just remove your string column and pass that column in dummy variable function.

$ pd.get_dummies(string column)

Related Questions In Machine Learning

0 votes
1 answer

Which machine learning classifier to choose, in general?

Choice of Machine Learning Classifier depends upon ...READ MORE

answered Feb 21, 2022 in Machine Learning by Dev
• 6,000 points
650 views
0 votes
1 answer

What is the process involved in machine Learning?

Discussing this on a high level, these ...READ MORE

answered May 10, 2019 in Machine Learning by Rhea
1,548 views
0 votes
1 answer

What is clustering in Machine Learning?

Clustering is a type of unsupervised learning ...READ MORE

answered May 10, 2019 in Machine Learning by Shridhar
1,193 views
0 votes
2 answers
+1 vote
2 answers

how can i count the items in a list?

Syntax :            list. count(value) Code: colors = ['red', 'green', ...READ MORE

answered Jul 7, 2019 in Python by Neha
• 330 points

edited Jul 8, 2019 by Kalgi 4,522 views
0 votes
1 answer
+5 votes
6 answers

Lowercase in Python

You can simply the built-in function in ...READ MORE

answered Apr 11, 2018 in Python by hemant
• 5,790 points
4,224 views
0 votes
1 answer

How to save machine learning model?

Hi@akhtar, To save your Machine Learning model, you ...READ MORE

answered Apr 13, 2020 in Machine Learning by MD
• 95,460 points
902 views
webinar REGISTER FOR FREE WEBINAR X
REGISTER NOW
webinar_success Thank you for registering Join Edureka Meetup community for 100+ Free Webinars each month JOIN MEETUP GROUP