Expected 2D array got 1D array instead array

0 votes

from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression(normalize = True)
display_model_performance("Linear Regression",lin_reg)

ValueError                                Traceback (most recent call last)
~\AppData\Local\Temp/ipykernel_27260/2220606045.py in <module>
      2 
      3 lin_reg = LinearRegression(normalize = True)
----> 4 display_model_performance("Linear Regression",lin_reg)
      5 

~\AppData\Local\Temp/ipykernel_27260/2396785647.py in display_model_performance(model_name, model, diamonds, labels, models_rmse, cvs_rmse_mean, tests_rmse, tests_accuracy, pipeline, x_test, y_test, cv)
     44     print("--- Test Performance ---")
     45 
---> 46     x_test_prepared = pipeline.transform(x_test)
     47 
     48      # Fit test dataset in model

C:\Users\Public\anaconda3\lib\site-packages\sklearn\compose\_column_transformer.py in transform(self, X)
    717         """
    718         check_is_fitted(self)
--> 719         X = _check_X(X)
    720 
    721         fit_dataframe_and_transform_dataframe = hasattr(

C:\Users\Public\anaconda3\lib\site-packages\sklearn\compose\_column_transformer.py in _check_X(X)
    818     if hasattr(X, "__array__") or sparse.issparse(X):
    819         return X
--> 820     return check_array(X, force_all_finite="allow-nan", dtype=object)
    821 
    822 

C:\Users\Public\anaconda3\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator)
    767             # If input is 1D raise error
    768             if array.ndim == 1:
--> 769                 raise ValueError(
    770                     "Expected 2D array, got 1D array instead:\narray={}.\n"
    771                     "Reshape your data either using array.reshape(-1, 1) if "

ValueError: Expected 2D array, got 1D array instead:
array=[].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.
Mar 5, 2022 in Machine Learning by Robel

edited Mar 4, 2025 329 views

No answer to this question. Be the first to respond.

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
webinar REGISTER FOR FREE WEBINAR X
REGISTER NOW
webinar_success Thank you for registering Join Edureka Meetup community for 100+ Free Webinars each month JOIN MEETUP GROUP